Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle.

نویسندگان

  • S Weber-Schürholz
  • E Wischmeyer
  • M Laurien
  • H Jockusch
  • T Schürholz
  • D W Landry
  • Q al-Awqati
چکیده

In mature mammalian muscle, the chloride conductance of the membrane is an important factor in the regulation of excitability. Up to now, no ligand was available for the biochemical characterization of muscle chloride channels. In order to localize and characterize these channels, we have used indanyloxyacetic acid (IAA)-94, a ligand previously used for epithelial Cl- channels (Landry, D. W., Reitman, M., Cragoe, E. J., Jr., and Al-Awqati, Q. (1987) J. Gen. Physiol. 90, 779-798; Landry, D. W., Akabas, M. H., Redhead, C., Edelman, A., Cragoe, E. J., Jr., and Al-Awqati, Q. (1989) Science 244, 1469-1472). IAA induced myotonic responses when microinjected into mature mouse muscle fibers, indicating a blockade of Cl- channels from the cytoplasmic side. Membrane vesicles were prepared from rabbit skeletal muscle and separated by sucrose gradient centrifugation. Fractions obtained (in the order of increasing density) were sarcolemma (SL), T-tubules (TT), sarcoplasmatic reticulum (SR), and triads and mitochondria (TR/M). The fraction enriched for SL was characterized by high specific binding capacity for [3H]saxitoxin (Na+ channel), whereas TT-rich fractions bound [3H]PN 200-110 (dihydropyridine receptor) with high specific activity. Upon patch-clamping of lipid supplemented vesicles, IAA-sensitive Cl- channels were found in the SL fraction but not in the SR. Highest specific activities in electrical diffusion potential sensitive 36Cl transport and [3H]IAA-94 binding were found in the SL. SL vesicles were solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate and subjected to IAA-Sepharose affinity chromatography. Specifically bound protein was eluted with 100 microM IAA-94 and either analyzed by SDS-gel electrophoresis or reconstituted into phospholipid vesicles. The eluate contained four polypeptides (specifically bound, mapp 110-120 and 60 kDa; unspecifically bound mapp 67 and 50 kDa) and was highly enriched for IAA-sensitive chloride channels as shown by patch-clamping after reconstitution. The IAA-sensitive 100/280-picosiemens chloride channels of the sarcolemma are likely to be responsible for its major chloride conductance and thereby for the stabilization of resting potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of chloride in constriction of descending vasa recta by angiotensin II.

We investigated the dependence of ANG II (10(-8) M)-induced constriction of outer medullary descending vasa recta (OMDVR) on membrane potential (Psim) and chloride ion. ANG II depolarized OMDVR, as measured by fully loading them with the voltage-sensitive dye bis[1,3-dibutylbarbituric acid-(5)] trimethineoxonol [DiBAC(4)(3)] or selectively loading their pericytes. ANG II was also observed to de...

متن کامل

A ubiquitous 64-kDa protein is a component of a chloride channel of plasma and intracellular membranes.

Chloride channels are present in the plasma and intracellular membranes of most cells. Previously, using the ligand indanyloxyacetic acid (IAA), we purified four major proteins from bovine kidney cortex membrane vesicles. These proteins gave rise to chloride channel activity when reconstituted into phospholipid vesicles. Two of these proteins (97 and 27 kDa) were found to be drug-binding protei...

متن کامل

CLIC1 inserts from the aqueous phase into phospholipid membranes, where it functions as an anion channel.

CLIC1 is a member of the CLIC family of proteins, which has been shown to demonstrate chloride channel activity when reconstituted in phospholipid vesicles. CLIC1 exists in cells as an integral membrane protein and as a soluble cytoplasmic protein, implying that CLIC1 might cycle between membrane-inserted and soluble forms. CLIC1 was purified and detergent was removed, yielding an aqueous solut...

متن کامل

[Effects of chloride channel blockers on excitatory junction potentials in smooth muscle cells of cochlear spiral modiolar artery in guinea pigs].

Chloride channels have been identified in vascular smooth muscle cells (SMCs). It has been shown that these channels are involved in myogenic tone regulation and neuromuscular transmission in various vascular beds. However, whether the chloride channels are responsible for the formation of excitatory junction potentials (EJPs) of SMCs in the spiral modiolar artery (SMA) remains unelucidated. In...

متن کامل

Epithelial chloride channel. Development of inhibitory ligands

Chloride channels are present in the majority of epithelial cells, where they mediate absorption or secretion of NaCl. Although the absorptive and secretory channels are well characterized in terms of their electrophysiological behavior, there is a lack of pharmacological ligands that can aid us in further functional and eventually molecular characterization. To obtain such ligands, we prepared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 1  شماره 

صفحات  -

تاریخ انتشار 1993